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ABSTRACT 

We present two methods for estimating the population mean vector and variance-covariance matrix in the 

multivariate normal distribution. We introduce two algorithms, both of which maximize the loglikelihood function. The first 

method is based on the least square results, and some proven identities to demonstrate the parameter matrix Φ  replaced 

by F, the solution of normal equation, can maximize the loglikelihood function. This means the least square solution 

coincides with the maximum likelihood estimates. The second methods will completely depend on matrix differentiation 

method. We also discuss the problem of how to identify a given data set that fits the multivariate normal distribution better 

than other distributions. 
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INTRODUCTION 

The objective of this paper seeks the estimators of the first two moments of the multivariate normal distribution, 

since almost allof the multivariate inferential procedures are based on this distribution. Before we seek the solution, we ask 

how we know this given real data set follows the multivariate normal distribution. In this section, we provide some general 

concepts and leave the technicalities to the concluding remarks. Many tests and graphical procedures have been suggested 

for evaluating whether a data set likely originated from a multivariate normal distribution. One possibility is to check each 

variable separately for univariate normality. There are some good reviews for both the univariate and multivariate case 

studies given by Gnanadesikan (1997) and Seber(1984). A basic graphical approach for checking normality is the Q-Q plot 

comparing quantiles of a sample against the population quantiles of the univariate normal. If the points are close to a 

straight line, then there is no indication of a departure from normality. 

Deviation from a straight line indicates nonnormality. Checking for multivariate normality is conceptually not as 

straightforward as assessing univariate normality. We adopt the procedure set forth in Mardia (1970), which we discuss in 

more detail in the concluding remarks. After we identify the data set belonging to multivariate normal, we can calculate 

thefirst two moments. In section 2, we give two algorithms and use both the least square method and the maximum 

likelihoodmethod to find the best estimate of the population parameters. 
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The Model 

The multivariate general linear model is given by 

1 2 1 2( , , . . . . . ) ( , , . . . . . . )

  E ( Y ) = X                                                                      ( 2 .1 )

p pE y y y X

o r

ψ ψ ψ=

Φ
 

Where ( )nxpY  response matrix, ( )nxmX design matrix and ( )mxpΦ parameter matrix. We select the kth column 

from Y, then we can write the linear model  

( ) ( )                                                                    ( 2 . 2 )kk
E y X ψ= � � ����

 

model, we make the following three assumptions: 

/
i

/
i

( ) ,   Cov(y , ) 0,   i j, 1,2,...p

and  y ~ ( , )

k j

i

Var y y

N x

= Ω = ≠

Φ Ω

������� ����

��� ���

 

Based on these three assumptions and model (2.2), and using the least square technique, we can derive the normal 

equation,  

' '                                                                          ( 2 . 3 )X X F X Y=  

Where F is the well-known least square estimator of the unknown parameter vector Φ . Usually, 
'X X  may not 

full rank, if 
/X X  

is singular then ' ( 1)( )X X −  conditional inverse exists and is not unique. We need to find a real matrix C such that 

/ ( 1) /( )C X X X X C− =  to promise CF uniqueness. We prove that the following propositions hold. 

Proposition 2.1 

/ / / / / that  (Y-X ) ( ) ( ) ( )Show Y X Y Y Y XF F X X FΦ − Φ = − + − Φ − Φ  

Proof: Aware of the fact that 'X X  may not be full rank, in general, we consider there exists a conditional inverse. Let  

' ( 1) /( )F X X X Y−= , / / / / side ( ) ( )Right Y Y Y XF F X X F= − + − Φ − Φ  

/ / / ( 1) / / / ( 1) / / / ( 1) /( ) ( ( ) ) (( ) )Y Y Y X X X X Y Y X X X X X X X X Y− − −= − + − Φ − Φ  

/ / / ( 1) / / / ( 1) / / ( 1) /( ) ( ) ( )Y Y Y X X X X Y Y X X X X X X X X Y− − −= − +  

/ / / ( 1) / / / ( 1) / / /( ) ( )X X X X X Y Y X X X X X X X− −−Φ − Φ + Φ Φ  

/=(Y-X ) ( )Y XΦ − Φ  
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Proposition 2.2 

/ (-1) /

/ (-1) / / (-1) /

Show that I-X(X X)  is idempotent matrix

(I-X(X X) )(I-X(X X) )

X

X X
 

/ (-1) / / (-1) / / (-1) / / ( 1) /

/ (-1) /

=I-X(X X) X(X X) X(X X) ( )

X(X X)

X X X X X X X

I X

−− +

= −
 

Proposition 2.3 

/ / / / / (-1) /

Show that E matrix is positive definite

E=Y Y-Y XF=Y Y-Y X(X X) X Y
 

/ / (-1) /=Y (I-X(X X) X )Y  

 = / / (-1) / / (-1) / /Y (I-X(X X) X )(I-X(X X) X )Y=u u����  

/ (-1) /

/ (-1) /

where u=(I-X(X X) X )Y, u is order (nxp) and

 I-X(X X) X  has rank n-r,  where r is the rank of X.
 

/
e

r is effective number of paramdeter. IF n-r p 

then rank(u) min( , ) ,  so E=u  is of rank p (n )en p p u p

≥

= = ≥
 

E is nonsingular and positive definite. 

Proposition 2.4  

-1If  is positive definite, then so is Ω Ω  

/

/ / 1

Proof: there exists a real vector a  such that

a 0  implies that  a 0 a a−Ω > ΩΩ Ω >

 

/ 1 -1  b    then  0 hence    is positive definitelet a b b−= Ω Ω > Ω . 

It is also well known that of 
1−Ω  is positive definite, 

then there exists a matrix B such that 
1 /BB−Ω =  

Proposition 2.5 

1 / / / / /

/ / / /

( ) ( ) ( ) ( )

( ) ( )

tr Y X X Y trBB Y X X Y

trB Y X X Y B tru u

−Ω − Φ − Φ = − Φ − Φ

= − Φ − Φ =
 

/(  matrix)>0  where  u ( )tr gramian X Y B= = − Φ  
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Now, we can spell out the joint density function and show that 

the least square estimation may coincide with the maximum likelihood estimator. 

1 2 1 2
1

( , ,.... ) ( , ,.... )
n

p p
i

L y y y f y y y
=

= ∏  

/ / 1 /

12 2

1 1
{ ( ) ( ) }                       ( 2 .4 )

2
( 2 )

n

i i i in p n
i

E x p y x y x

π

−

=
= − − Φ Ω − Φ

Ω
∑

 

Let us pay attention to exponential part only, 

/ / 1 /

1

1 / / /

1

1
{ ( ) ( )}

2

1
{ ( )( ) }

2

n

i i i i
i

n

i i i i
i

Exp y x y x

Exp tr y x y x

−

=

−

=

− − Φ Ω − Φ

= − Ω − Φ − Φ

∑

∑

 

1 /

1 / / / /

1
{ ( )( ) }

2
1

{ ( ( ) ( )}
2

Exp tr Y X Y X

Exp tr Y Y Y XF F X X F

−

−

= − Ω − Φ − Φ

= − Ω − + − Φ − Φ

 

1 1 / /

1 / / /

1
{ ( ) ( ) }

2
1

{ ( ) ( ) }                        ( 2 . 5 )
2

E x p t r E t r F X X F

E x p t r E t r B F X X F B

− −

−

= − Ω + Ω − Φ − Φ

= − Ω + − Φ − Φ

 

After taking logarithm on equation (2.4), we finally get, 

1 2
1 2

1
ln ( , ,..... ) ln(2 ) ln   where h= ( )

2 2 2p
np n

L y y y tr E h X F Bπ −= − − Ω − Ω − − Φ  

~ ~
2 2 h 0  if h 0  then . Hence LnL is maximized if  is replaced by F.where F≥ = Φ = Φ  

This demonstrates that F is that maximum likelihood estimator of Φ and its maximum value is: 

� 11
ln ( ) ln(2 ) ln

2 2 2

np n
L F tr Eπ −Φ = = − − Ω − Ω  

Where E is matrix of the sum of the square and product of error. If 
-1,  then E  exists. en p> where en  is 

degree of freedom of error. In the next section, we will discuss the matrix differentiation method 

Matrix Differentiation Method 

A random mx1 column vector x�  is said to be the multivariate normal distribution if its probability density 

function is given by  
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1
 / 12 2

1
( ) ( 2 ) { ( ) ( )}                     ( 3 .1 )

2

m

f x E x p x xπ µ µ
− − −= Ω − − Ω −� ���� � �� � ��

 

for x ,  where   an mx1mR isµ∈� ���  and  vector Ω ,a nonsingular symmetric mxm matrix, In short,

x ~ ( , ) , nN µ Ω� ��
, the parameter  and  µ Ω�� are just the expectation and variance matrix of x�  with 

( )  and Var(x)E x µ= = Ω�� ��
. 

We wish to show that the maximum likelihood estimator of  and  µ Ω��  

are ⌢ � � �
/

1 1

1 1
,    ( )( )

n n

i i i
i i

x x x x x x
n n

µ
= =

= = Ω = − −∑ ∑��� ��� ����� ��
. From the density function (3.1), we can derive the loglikelihood 

as follows: 

1m n n 1
ln ( )  l n ( 2 )  l n z                            ( 3 .2 )   

2 2 2
L x t rπ −= − − Ω − Ω���

 

/where z= ( )( )  i ix xµ µ− −∑ ��� ����� ��
. In equation (3.2), we can take derivative with respective to  and   µ Ω�� as 

follows: 

1ln ( ) 1
 ( ) 0
2

L x z
tr

µ µ
−∂ ∂= − Ω =

∂ ∂
���

�� ��

 

⌢

/ /

i

{ ( ) ( )( ) }

{ 2(( )} 0       x =n                 

i i

i

z
x x

x

µ µ
µ µ

µ µ µ

µ µ

∂ ∂∂ = − − + − −
∂ ∂ ∂

= − − =

∑

∑ ∑

�� ��
���� ����� ��

�� �� ��

� �������  

⌢
s o                                                                             (3.3 )xµ =

⌢
���  

1 1 1

1 1 1

ln ( ) n 1
 0
2 2

L x
z

z n

− − −

− − −

∂
= − Ω + Ω Ω =

∂Ω
Ω Ω = Ω

���
 

� /1 1
( ) ( )                                         ( 3 .4 )i iz x x x x

n n
Ω = = − −∑  

The equation (3.3) and (3.4) are the required maximum likelihood estimator of  and µ Ω . However, we still 

need to prove that theyare really make the equation (3.2) maximized. To reach this purpose, we take first derivative with 

respect to the loglikelihood function (3.2) as follow. 
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1 1

1 1 1

1 / /

n 1 1
( , )  log ( )z -

2 2 2
n 1

 ( ) z
2 2

1
+ { ( )( ) ( ) ( ) }

2 i i

d d tr d tr dz

tr d tr d

tr x d d x

µ

µ µ µ µ

− −

− − −

−

Λ Ω = − Ω − Ω Ω

= − Ω Ω + Ω Ω Ω

Ω − + −∑ ∑

������

 

1 -1 / 11
( ) ( z -n ) ( ) ( )                   ( 3 .5 )

2
t r d n d xµ µ− −= Ω Ω Ω Ω + Ω −�  

If we ignore the symmetry constraint on Ω , we obtain the first order conditions 

1 -1 -1(z-n ) 0  and  ( ) 0x µ−Ω Ω Ω = Ω − =�  from which 

equation (3.3) and (3.4) follow immediately. To prove that we have in fact found the maximum value of equation 

(3.5), we differentiate (3.5) again. This can yield: 

2 1 -1 1 1 -11
( , ) ( ){ (z-n ) [( ) +(dz-nd ) ]}                

2
d tr d d z n dµ − − −Λ Ω = Ω Ω Ω Ω + Ω − Ω Ω Ω Ω

// 1 1( ) [ ( ) ( ) ]n d d x dµ µ µ− −+ Ω − + Ω −����� ��� ���
 

at the point ( � �( , )µ Ω�� , we have �,   z 0 and dz 0x nµ= − Ω = =ɵ ɵ
� �� . Hence 

2 1 -1 / 1( , ) ( ) (d ) ( ) 0
2

n
d tr d n d dµ µ µ− −Λ Ω = − Ω Ω Ω Ω − Ω <����

 unless 0 and d =0d µ = Ω�� . It follows that Λ  

has a strict local maximum at  

� �( , )µ Ω��  

Concluding Remarks 

Mardia(1970) method for assessing multivariate normality is a generalization of the univariate test based on the 

skewness and kurtosis measures. Let  and xy ���  vectors are independent, identically distributed with mean vector µ��  and 

covariance matrix  

�Ω . The skewness and kurtosis for multivariate population are defined by Mardia as :  

/ 1 3 / 1 2
1, 2,(( ) ( )) ,   (( ) ( ))p pE y x E y yβ µ µ β µ µ− −= − Ω − = − Ω −��� �� �� ���� �� ��  

Since third-order central moments for the multivariate normal distribution are zero, 

1, 0  when y ~ ( , ).p pNβ µ= Ω��� Then the estimates of 1, 2,  p pandβ β  are given by, 

�3 2 / 1
1, 2,p ij2

1 1 1

1 1
,   b ,   h ( ) ( )

n n n

p ij ii i i
i j i

b h h where y y y y
nn

−

= = =
= = = − Ω −∑∑ ∑ �� ����� ���
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Mardia(1970,1974) gives percentage points 
1, 2,p and b  for p=2,3,4,pb which can be used in testing for 

multivariate normality. Forother values of p when n>50, the approximation tests are available. For 1,pb , the statistic 

1 1, 1
( 1)( 2)

6

( 1)( 1)( 3)
~

6(( 1)( 1) 6) p
p p p

p n n
z b

n P
χ

+ +

+ + +=
+ + −

 

We reject the hypothesis of multivariate normality if 
2

1 0.05z χ> . 

With 2,pb , we wish to reject the extreme values (too peaked or too flat). For the upper 0.025 points of 2,pb  use 

2,
2

( 2)
~ (0,1)

8 ( 2) /
pb p p

z N
p p n

− +
=

+
 

For the lower 0.025 points we break into two possible cases : 

When 50 400,n≤ ≤  we use 2,
3

( 2)( 1) /
~ (0,1)

8 ( 2) /( 1)

pb p p n p n
z N

p p n

− + + +
=

+ −
(2)When 400,n ≥  we use 2z . 
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