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ABSTRACT

We present two methods for estimating the population mean vector and variance-covariance matrix in the

multivariate normal distribution. We introduce two algorithms, both of which maximize the loglikelihood function. The first

method is based on the least square results, and some proven identities to demonstrate the parameter matrix O replaced
by F, the solution of normal equation, can maximize the loglikelihood function. This means the least square solution
coincides with the maximum likelihood estimates. The second methods will completely depend on matrix differentiation
method. We also discuss the problem of how to identify a given data set that fits the multivariate normal distribution better

than other distributions.
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INTRODUCTION

The objective of this paper seeks the estimatothefirst two moments of the multivariate normadtdbution,
since almost allof the multivariate inferential pedures are based on this distribution. Beforeeed she solution, we ask
how we know this given real data set follows thdtivariate normal distribution. In this section, weovide some general
concepts and leave the technicalities to the calimfuremarks. Many tests and graphical proceduage been suggested
for evaluating whether a data set likely originafbexdn a multivariate normal distribution. One pddi#ty is to check each
variable separately for univariate normality. Thare some good reviews for both the univariate mutivariate case
studies given by Gnanadesikan (1997) and Seber]188%asic graphical approach for checking normgatitthe Q-Q plot
comparing quantiles of a sample against the pdpulajuantiles of the univariate normal. If the geimre close to a

straight line, then there is no indication of aaktpre from normality.

Deviation from a straight line indicates nonnormyalChecking for multivariate normality is concegpliy not as
straightforward as assessing univariate hormalitg. adopt the procedure set forth in Mardia (19W@®jch we discuss in
more detail in the concluding remarks. After wenitiiy the data set belonging to multivariate normaé can calculate
thefirst two moments. In section 2, we give twooaidhms and use both the least square method andndximum

likelihoodmethod to find the best estimate of to@yation parameters.
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36 WilliamWSChen

The Model

The multivariate general linear model is given by

By Yo ¥ )= X @l s )
or E(Y)=Xo (2.)

WhereY(nXp) response matrixx(nxm) design matrix ande(mXp) parameter matrix. We select the kth column

from Y, then we can write the linear model
E(Xk)zx(g/,k) (2.2
model, we make the following three assumptions:

Vaf(}ﬁ_/(_):Q, COV(X ’yj ): 0, i# j, 1,2,...
and y ~N ﬁ.’qa Q)

Based on these three assumptions and model (A@)ysing the least square technique, we can dérévaormal

equation,

X XF = XY (2.3

Where F is the well-known least square estimatdh@funknown parameter vectép . Usually, X X may not

full rank, if X' X

is singular ther(X "X )(» conditional inverse exists and is not unique. Wechto find a real matrix C such that

C(X’X)("l) X !X =C to promise CF uniqueness. We prove that the fatigyropositions hold.

Proposition 2.1
Show that (Y-X®) (Y = XP)=Y'Y-Y'XF+ F -dY X'X (F - )
Proof: Aware of the fact thaX X may not be full rank, in general, we consider¢hexists a conditional inverse. Let
F=(X' X)X, Right side=Y'Y -Y'XF+ F-®JX'X F-®)
=YY =YX (X X) XY + (VX (X X) T =) XX (X' X)X - )
=YY =YX (X' X)IXNY + Y X (X X)X X (X' X)X N
O XX (X' X)X =Y X(X' X)X XD+ DX/ XD

=(Y-X®)'(Y - X )
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Proposition 2.2

Show that I-X(X X}PX' is idempotent matr
(1-X (X X) OXA-X(X K) XY

=1-X(XX) DX =X(X X) XX X) DX X)X €I/
=1 = X(X'X) Px’

Proposition 2.3

Show that E matrix is positive defin
E=Y/Y-Y'XF=Y Y=Y X(X X) DX’y
=Y/ (1-X(X X) X )y

=Y (XX X) X YI-X(X X) R H)y=u u

where u=(I-X(X X X')Y, u is order (nxp) and
I-X(X'X) X "has rank n-r, where r is thank of X.

r is effective number of paramdeter.nf > p
then rank(uF ming, p ¥ p , so EZu s of rankm, = p)

E is nonsingular and positive defini
Proposition 2.4

If Q is positive definite, then so @*

Proof: there exists a real vectdr a stk
aQa>0 implies that ‘@Q™Qa> 0
let b=Qa thenb/Q™b> 0henceQ™ s positive dé.

It is also well known that o2 1 is positive definite,

then there exists a matrix B such @~ = BB/

Proposition 2.5

trQ (Y - ) X' X(Y = ®) =trBB/ (Y = ®)/ X/ X (Y - D)
=trB' (Y - ®) X' X(Y - ®)B =tru’u

=tr(gramian matrix)>0 where_& X Y{-® 'B
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Now, we can spell out the joint density functior amow that

the least square estimation may coincide with thgimum likelihood estimator.

LYo YooeYp )= |_| f YooYy .
2o 7P

- nlp : EXP{‘%ZH(L-ﬁWQ*(L—x_KM} (2.4)
(2m) 2 |Qfz =1

Let us pay attention to exponential part only,
1< / -1 /
Bxp( -2 2 (% - X D) Q7Y - X D)
i=1
1 -1 3 / /
:Exp{—EtrQ DN XDy XD
=l

- Exp{—%trQ_l(Y C XY - XD)A

= Exp{—%trQ_l(Y’Y ~Y'XF +(F - @) X'X(F - ®)}

= Exp{—%trQ"lE +trQ N(F - @) X 'X(F - @)}
=Exp{—%trQ'lE+trB’(F—dD)’X’X(F—(D)B} (2.5)

After taking logarithm on equation (2.4), we finadjet,

INL(Ys, YareonrYp )= —”—2p |n(m)—g IHQ) —lztrQ‘lE ~h? where % F-® B

whereh?>0 if h?= 0 then®=F . Hence LnL is maximié ® is replaced by |

This demonstrates that F is that maximum likelihestimator of® and its maximum value is:
i~ n n 1 -
InL(®=F)= —Epln(ZH) -Zinja -2 e

Where E is matrix of the sum of the square and yebdf error. If N, > P, then E1 existSwhere N is

degree of freedom of error. In the next sectionyilediscuss the matrix differentiation method

Matrix Differentiation Method

A random mx1 column vectoX is said to be the multivariate normal distributirits probability density

function is given by
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m
2

f(x)=(2m) 2 Q]

1 1 )
2 Exp{-—(x - )'Q M (x = )} (3.1

for xOR™, wherepis an my vector andQ ,a nonsingular symmetric mxm matrix, In short,

X~N,(u,Q), , the parameter andQ are just the expectation and variance matrix Xf with

E(x) = 4 and Var(x Q.

We wish to show that the maximum likelihood estionaif [/ andQ

-~ 13 13
are ;, nle x, Q= EZ( >q . From the density function (3.1), we can derive liglikelihood
i= i=1
as follows:
InL(x) = - mz—”ln(zn)— %In|Q|—%trQ'lz (3.2)

where z Z & & &5 . In equation (3.2), we can take derivative witlspective to/_,l and Q as

follows:
a|nL(§)=_£t Q-l(ﬂ)_o
ou 2 ou
62_ _ag _ / _ _a_/;[
au= 20 A O ag)@
=2{2(x-@r =0 Y x=nu
SO U = X (3)
INLR) - Ny tgigizg
0Q 2 2
Q120 1t=nQ?

1 1 - —/

Q :—Z:—Z (X = X)(x; = X) (3.4)
n n —_ — —

The equation (3.3) and (3.4) are the required mawintikelihood estimator of{/ andQ . However, we still

need to prove that theyare really make the equd8d) maximized. To reach this purpose, we takst fierivative with
respect to the loglikelihood function (3.2) asdell
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dA(UQ) =~ Ldloglo| - 1tr @)z —trQdz
HX)=75 2 2
n. A1 1. -1 -1

=- Etl’Q dQ +—2tI’Q (dQ)Q VA

ELLROCRYCHICT)YCRY

:%tr(dQ)Q'l(z-nQ)Q'1+n(d,u)’Q‘l(g—,u_) (3.5

If we ignore the symmetry constraint o) , we obtain the first order conditions
QY (z-nQ)Q?=0 andQ™ - F (fromwhich
equation (3.3) and (3.4) follow immediately. To peahat we have in fact found the maximum valueapiation

(3.5), we differentiate (3.5) again. This can yield
d’A(u,Q) =%tr (dQ){dQ (z-nQ)Q ™+ Q Y(z-nQ)dQ™ *(dz-nd2 X2 ]}

+n(d ) [dQ ™ (x - ) + Q7(-d )]
at the point (gl,ﬁ) , we havez( = H, z-nQ=0and dz ' Hence

d2A(1,Q) = - 2r (dQ)Q1dQ)Q L - n(dw)'Q du< o unlessd £ =0 and @ =(. it follows that /\
> H) -
has a strict local maximum at
(4, Q)
Concluding Remarks

Mardia(1970) method for assessing multivariate raditynis a generalization of the univariate tessdzhon the

skewness and kurtosis measures. yeand _Xvectors are independent, identically distributethwnean vector// and

covariance matrix

~

Q . The skewness and kurtosis for multivariate paputeare defined by Mardia as :

B =E(y -1/ Q7 (x= 1), Bop =E(y- 1) Q My~ 1))

Since third-order central moments for the multisgi normal distribution are  zero,

,Bl,p =0 Whenqy ~Np g € )Then the estimates qu,p and ,Bz,p are given by,

bl,p:n*lszZzlh?, b2,p:%;hiszhere h=0-yJ2 6 -y)

i=1j
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Mardia(1970,1974) gives percentage poilhjisp and Qp for p=2,3,.which can be used in testing for

multivariate normality. Forother values of p wherb, the approximation tests are available. bPlb’ the statistic

, = (P+H(n+1)(n+3)
L 8((n+1)(P+1)- 6)

b,~Xx

glp(p+1)(p+2>

We reject the hypothesis of multivariate normaifityz, > X§.05.

With bz prwe wish to reject the extreme values (too pealddo flat). For the upper 0.025 pointsb§ p use

— +2
, _, - p(p )~N 0.1

J8p(p+2)/n 5

For the lower 0.025 points we break into two pdssidases :

When50< n< 400 we use _byp ~P(p+2)(n+p+1)/n
T \Ba(pr /-

(2)Whenn =400, we useZ, .

~N(0,1)
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